# Infrared Intensities as a Quantitative Measure of Intramolecular Interactions. Part XXVII.<sup>1</sup> Substituents with Donor-Acceptor Character: the NSO Group

By Graeme Butt, Michael Davis, Yuk Tau Pang, and Ronald D. Topsom,\* Department of Organic Chemistry, La Trobe University, Bundoora, Victoria 3083, Australia

Alan R. Katritzky,\* School of Chemical Sciences, University of East Anglia, Norwich NOR 88C

It is shown that the NSO group has little resonance interaction with a benzene ring in the ground state but that it is capable of resonance donation or acceptance in the presence of a second substituent, depending on the electron demand. This variable interaction is compared with that of related groups.

CONSIDERABLE recent interest has been shown in the properties and reactions of N-sulphinylamines, particularly N-sulphinylanilines. Reports have been made of theoretical<sup>2</sup> and X-ray emission spectrographic<sup>3</sup> studies of electron densities, of dipole moments,4,5 and of i.r.6-8 and u.v. spectra. Analysis of the i.r. and Raman spectra of N-sulphinylaniline suggested <sup>8</sup> that the NSO group was coplanar with the benzene ring but was not collinear with the axis through the nitrogen atom and C-1 and C-4 of the benzene ring.

Certain related substituents such as NCO and NCS

† Note added after submission. Recent evidence (J. S. Bonham, C. L. Cheng, R. J. W. Le Fèvre, and G. L. D. Ritchie, Austral. J. Chem., 1973, **26**, 421) indicates that the planar transform may be the preferred conformation rather than the planar cis-form represented in the diagrams in this paper. However, none of the conclusions are thereby affected.

<sup>1</sup> Part XXVI, T. J. Broxton, D. G. Cameron, R. D. Topsom, and A. R. Katritzky, preceding paper. <sup>2</sup> V. V. Plemenkov and E. G. Kataev, Str. Mol. Kvantoveya

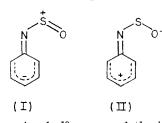
Khim., 1970, 146 (Chem. Abs., 1971, 74, 87,103).

show<sup>9</sup> variable electronic interaction with a benzene ring, dependent on the demand produced by a second substituent, particularly if this is attached in the conjugated para-position. It was possible to reverse the behaviour of such a substituent from resonance-donating to resonance-accepting by introducing a group such as NMe, in the para-position. Failure to appreciate that some substituents can display such variable  $\pi$ -interaction can lead to confusion, although some workers<sup>4</sup> have appreciated the possibility of such variable interaction

<sup>3</sup> Y. Takahashi, K. Yabe, and T. Sato, Bull. Chem. Soc. Japan, 1969, **42**, 2707; Y. Tkahashi and K. Yabe, *ibid.*, p. 3064. <sup>4</sup> G. Kresze and H. Smalla, Chem. Ber., 1959, **92**, 1042.

<sup>5</sup> L. Janelli, U. Lamanna, and H. Lumbroso, Bull. Soc. chim.

France, 1966, 3626.


<sup>6</sup> G. Kresze and A. Maschke, *Chem. Ber.*, 1961, **94**, 450.
 <sup>7</sup> G. Kresze, U. Uhlich, E. Ropte, and B. Schrader, *Z. analyt.*

Chem., 1963, 197, 283. 8 C. V. Stephenson, W. C. Coburn, and W. S. Wildox, Spectro-

chim. Acta, 1961, 17, 933. 9 A. R. Katritzky, H. J. Keogh, S. Ohlenrott, and R. D.

Topsom, J. Amer. Chem. Soc., 1970, 92, 6855.

in substituted N-sulphinylanilines [(I) and (II) represent the relevant canonical forms].



We have previously <sup>10</sup> measured the intensity of the  $v_8$  ( $v_{16}$  in Herzberg's nomenclature) absorption of *N*-sulphinylaniline itself and thereby derived a  $\sigma^{\circ}_{\rm R}$  value of  $\pm 0.09$ . A value of  $\pm 0.13$  has been obtained <sup>11</sup> from <sup>19</sup>F shift measurements on *meta-* and *para-*fluoro-*N*-sulphinylanilines but this may be enhanced <sup>9</sup> by through-conjugation. Other reported i.r. work appears to be limited to general studies <sup>8</sup> or correlation <sup>6,7</sup> of  $v_{\rm NSO}$  frequencies and extinction coefficients with  $\sigma$  values for a series of substituted *N*-sulphinylanilines. We now report the intensities of  $v_8$  near 1600 cm<sup>-1</sup> for a series of *meta-* and *para-*substituted *N*-sulphinylbenzenes; the results illuminate the resonance effects of the NSO group

## EXPERIMENTAL AND RESULTS

The N-sulphinylanilines prepared are listed in Table 1. Two compounds not previously reported are 4-fluoro-Nsulphinylaniline, prepared from *p*-fluoroaniline by the

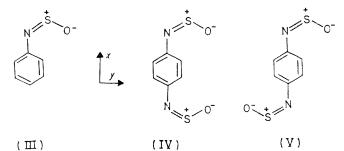
#### TABLE 1

Intensities  $(A/l \text{ mol}^{-1} \text{ cm}^{-2})$  for the  $v_8$  vibrations of metaand para-substituted N-sulphinylanilines (YC<sub>6</sub>H<sub>4</sub>·NSO)

| 1                     |            |         | 1 2                   |                     |  |  |  |  |
|-----------------------|------------|---------|-----------------------|---------------------|--|--|--|--|
| Υ                     | v/cm-1     | A - 170 | M.p.[B.p.](°C)        | Lit. m.p.[b.p.](°C) |  |  |  |  |
| para-Series           |            |         |                       |                     |  |  |  |  |
| NMe.                  | 1599       | 22661   | 7273                  | 72 ª                |  |  |  |  |
|                       | 1596, 1569 | 8002    | 25                    | 26 <sup>b</sup>     |  |  |  |  |
| F                     | 1598, 1587 | 3325    | [107 at               |                     |  |  |  |  |
|                       |            |         | 16  mmHg              |                     |  |  |  |  |
| Cl                    | 1585, 1564 | 1219    | 32 - 33               | 36 c                |  |  |  |  |
| Br                    | 1589, 1575 | 1439    | 61                    | 60—61 ¢             |  |  |  |  |
|                       | 1561       |         |                       |                     |  |  |  |  |
| Me                    | 1602, 1578 | 530     | 9                     | 9 c                 |  |  |  |  |
|                       | 1564       |         |                       |                     |  |  |  |  |
| CN                    | 1623, 1607 |         | 62 - 63               |                     |  |  |  |  |
| $NO_2$                | 1621, 1601 | 2331    | 69                    | 70 c                |  |  |  |  |
|                       | 1588       | 000     |                       | 110 5 114 54        |  |  |  |  |
| NSO                   | 1585       | 336     | 111 - 112             | 113·5—114·5 °       |  |  |  |  |
| meta-Series $A - 340$ |            |         |                       |                     |  |  |  |  |
| MeO                   | 1595, 1589 | 5268    | [138139 at            | [98 at              |  |  |  |  |
|                       | 1575       |         | $25 \mathrm{mmHg}$    | 2  mmHg             |  |  |  |  |
| Cl                    | 1583, 1565 | 1952    | [122—124 at           | [126-127 at         |  |  |  |  |
|                       |            |         | 25 mmHg] <sup>e</sup> | 16 mmHg] °          |  |  |  |  |
| Me                    | 1603, 1594 | , 887   | [110—112 at           |                     |  |  |  |  |
|                       | 1573       |         | $25~\mathrm{mmHg}]$   | $760~{ m mmHg}$ ] ° |  |  |  |  |
| a                     | A Francke  | Rev 189 | 8 <b>31</b> 9179 b    | Ref 4 CRef 12       |  |  |  |  |

<sup>a</sup> A. Francke, *Ber.*, 1898, **31**, 2179. <sup>b</sup> Ref. 4. <sup>e</sup> Ref. 12. <sup>d</sup> Ref. 6. <sup>e</sup> Found: C, 41·3; H, 2·5; N, 8·1. Calc. for  $C_6H_4$ -CINOS: C, 41·5; H, 2·3; N, 8·1%.

general method <sup>12</sup> used for substituted N-sulphinylanilines, as a yellow oil, b.p. 107° at 16 mmHg (Found: C, 45·6; H, 2·7; N, 8·8. C<sub>6</sub>H<sub>4</sub>FNOS requires C, 45·9; H, 2·6; N, <sup>10</sup> R. T. C. Brownlee, R. E. J. Hutchinson, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, **90**, 1757.


<sup>11</sup> R. W. Taft and W. A. Sheppard, reported in ref. 10.

261

8.9%); and 4-cyano-N-sulphinylaniline, similarly obtained from p-cyanoaniline as light yellow needles, m.p.  $62-63^{\circ}$ (Found: C, 51·4; H, 2·8; N, 16·8. C<sub>7</sub>H<sub>4</sub>N<sub>2</sub>OS requires C, 51·2; H, 2·5; N, 17·1%). The i.r. intensities (A in l mol<sup>-1</sup> cm<sup>-2</sup>) were measured for dilute solutions in carbon tetrachloride as previously described.<sup>10</sup> The reproducibility in  $(A - 170)^{\frac{1}{2}}$  values is  $\pm 1$  except for the value for the di-N-sulphinyl-p-phenylenediamine ( $\pm 2$ ). Care was taken to exclude moisture, which leads to hydrolysis of the Nsulphinyl group; this was found to be particularly necessary with the di-N-sulphinyl-p-phenylenediamine (studied in benzene because of low solubility in carbon tetrachloride).

## DISCUSSION

Asymmetry.—Monosubstituted benzenes of less than  $C_{2v}$  symmetry, such as N-sulphinylaniline (III), have  $v_8$  intensities made up of contributions in both x and y directions. The  $\sigma^{\circ}_{\rm R}$  value previously <sup>10</sup> obtained from



equation (1) applicable to monosubstituted benzenes was +0.09. The A value reported here for di-N-sulphinyl-

$$A = 17,600 \ (\sigma^{\circ}_{\rm R})^2 + 100 \tag{1}$$

*p*-phenylenediamine allows <sup>13,14</sup> the calculation of  $\sigma^{\circ}_{\rm R} y$  as 0.11 from equation (2). This assumes that the *cis*-

$$4 = 15,000 \ (\sigma^{\circ}_{\rm R} \gamma)^2 + 170 \tag{2}$$

(IV) and *trans*- (V) forms occur in equal amounts. Within this assumption and the accuracy of the overtone contributions of 100 and 170 above it appears that  $\sigma^{\circ}_{R}x$ , equivalent to the normally described resonance interaction of the substituent with the ring, is close to zero.

para-Substituted N-Sulphinylanilines.—Earlier work <sup>13</sup> showed that the resonance interactions in *para*-disubstituted benzenes could be described by equation (3),

$$A - 170 = 15,000 \, [\sigma^{\circ}_{\rm R} (1) - \sigma^{\circ}_{\rm R} (2) + \lambda]^2 \quad (3)$$

where  $\lambda$  represents the change in interaction in addition to that expected for additivity of substituent effects. Equation (4) is applicable where one of the substituents,

$$A - 170 = 15,000 \left[ (\sigma^{\circ}_{R}s - \sigma^{\circ}_{R}x + \lambda)^{2} + (\sigma^{\circ}_{R}y)^{2} \right]$$
(4)

such as NSO, has lower than  $C_{2v}$  symmetry. An analysis <sup>13</sup> of many earlier results had led to the adoption of

<sup>12</sup> A. Michaelis, Annalen, 1893, 274, 173.

<sup>13</sup> R. T. C. Brownlee, D. G. Cameron, R. D. Topsom, A. R. Katritzky, and A. F. Pozharsky, J.C.S. Perkin II, 1974, 247.
 <sup>14</sup> P. J. Q. English, A. R. Katritzky, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1968, 90, 1767.

15,000 instead of 11,800 <sup>14</sup> for the constant in equations (2)—(4) and we therefore also briefly reconsider some results reported <sup>9</sup> earlier for related substituents, and demonstrate that the conclusions made still hold.

#### TABLE 2

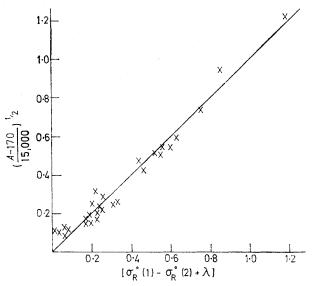
Electronic interactions in *para*-substituted *N*-sulphinylanilines, phenyl isocyanates, phenyl isothiocyanates, phenyl azides, phenyl isocyanates, and nitrosobenzenes

| Т              | -             | · · · · · ·               |                                                                     |         |           |
|----------------|---------------|---------------------------|---------------------------------------------------------------------|---------|-----------|
|                |               | $(A - 170)^{\frac{1}{2}}$ |                                                                     |         |           |
| Substituents   |               | (15,000)                  | $[\sigma^{\circ}_{\mathbf{R}}(1) - \sigma^{\circ}_{\mathbf{R}}(2)]$ | ] b 入 o | $f_{p} d$ |
| NSO            | NMe,          | 1.22                      | 0.54                                                                | 0.63    | 1.17      |
|                | MeO           | 0.72                      | 0.43                                                                | 0.33    | 0.76      |
|                | F             | 0.46                      | 0.34                                                                | 0.12    | 0.46      |
|                | Cl            | 0.26                      | 0.22                                                                | 0.05    | 0.27      |
|                | $\mathbf{Br}$ | 0.29                      | 0.23                                                                | 0.08    | 0.31      |
|                | Me            | 0.16                      | 0.10                                                                | 0.88    | 0.18      |
|                | CN            | 0.21                      | -0.09                                                               | e       |           |
|                | $NO_2$        | 0.38f                     | -0.12                                                               | е       |           |
| NCO            | NMe.          | 0.50                      | 0.13                                                                | 0.38    | 0.51      |
|                | F -           | 0.11                      | 0.06                                                                | 0.07    | 0.01      |
|                | Cl            | 0.23                      | -0.19                                                               | -0.05   | 0.24      |
|                | Me            | 0.22                      | 0.30                                                                | 0.05    | 0.25      |
|                | $NO_2$        | 0·68 f                    | 0.58                                                                | e       |           |
| NCS            | NMe2          | 0.54                      | 0.18                                                                | 0.38    | 0.56      |
|                | F -           | 0.13                      | 0.01                                                                | 0.07    | 0.06      |
|                | Cl            | 0.17                      | 0.13                                                                | -0.04   | 0.17      |
|                | Me            | 0.15                      | -0.22                                                               | 0.02    | 0.20      |
|                | $NO_2$        | $0.66^{f}$                | -0.52                                                               | е       |           |
| N <sub>3</sub> | $NMe_2$       | 0.51                      | 0.19                                                                | 0.35    | 0.54      |
| •              | F             | 0.07                      | 0.00                                                                | 0.06    | 0.06      |
|                | Cl            | 0.16                      | -0.13                                                               | -0.02   | 0.18      |
|                | Me            | 0.17                      | -0.25                                                               | 0.04    | 0.21      |
|                | $NO_2$        | 0.631                     | -0.52                                                               | С       |           |
| NC             | NMe2          | 0.54                      | 0.39                                                                | 0.21    | 0.60      |
|                | F -           | 0.17                      | 0.19                                                                | 0.04    | 0.23      |
|                | Cl            | 0.12                      | 0.02                                                                | 0.01    | 0.08      |
|                | Me            | 0.10                      | -0.02                                                               | 0.02    | 0.03      |
| NO             | $\rm NMe_2$   | 0.94                      | 0.60                                                                | 0.25    | 0.85      |
|                | OMe           | 0.59                      | 0.50                                                                | 0.13    | 0.63      |
|                | $\mathbf{F}$  | 0.42                      | 0.41                                                                | 0.05    | 0.46      |
|                | Cl            | 0.24                      | 0.29                                                                | 0.02    | 0.31      |
|                | $\mathbf{Br}$ | 0.26                      | 0.30                                                                | 0.03    | 0.33      |
|                | Ме            | 0.25                      | 0.17                                                                | 0.03    | 0.20      |
|                | $NO_2$        | $0.19^{f}$                | -0.10                                                               | в       |           |
|                | COMe          | 0.12                      | -0.12                                                               | е       |           |
|                | $CO_2Me$      | 0.09                      | -0.11                                                               | e       |           |
|                | $CN^{-}$      | 0                         | -0.05                                                               | е       |           |

<sup>*a*</sup> A Values (in 1 mol<sup>-1</sup> cm<sup>-2</sup>) from ref. 9 or this paper. Values for substituted N-sulphinylanilines or phenyl azides are corrected for asymmetry. <sup>*b*</sup>  $\sigma^{0}_{\mathbf{R}} x$  used instead of  $\sigma^{0}_{\mathbf{R}}(1)$  for NSO and N<sub>3</sub>. <sup>*c*</sup>  $\lambda = (\sigma^{+} - \sigma^{0})_{D} K_{\mathbf{X}}$  for donor-acceptor pairs, and the difference between this and  $(\sigma^{0}_{\mathbf{R}})_{D} K_{\mathbf{X}}$  for cases where both substituents are subject to interactions into *d*-orbitals in the opposite direction. <sup>*d*</sup> f<sub>D</sub> =  $|[\sigma^{2}_{\mathbf{R}}(1) - \sigma^{0}_{\mathbf{R}}(2) + \lambda)|$ . <sup>*e*</sup> ( $\sigma^{+} - \sigma^{0}$ ) Values for NSO, NCO, NCS, N<sub>3</sub>, and NO are not available. *J* Values for *para*-substituted nitrobenzenes are enhanced by interaction with v<sub>Nos</sub> (see ref. 13).

Table 2 lists values of  $[(A - 170)/15,000]^{\frac{1}{2}}$  and of  $[\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2)]$ . It can be seen that considerable discrepancies ( $\Delta$ ) \* exist between these quantities for all the classes of substituents studied, demonstrating the existence of strong substituent-substituent interactions of NSO, NCO, NCS, N<sub>3</sub>, NC, and NO groups with both donor and acceptor substituents. These discrepancies may be treated quantitatively. Where the substituent acts as an electron acceptor the appropriate equation is

(5),<sup>13,14</sup> where 
$$(\sigma^+ - \sigma^\circ)$$
 values were taken from ref. 13


$$\lambda = K_{\Lambda} \left( \sigma^{+} D - \sigma^{\circ} D \right) \tag{5}$$

The  $K_{\Lambda}$  values calculated from plots of  $\Delta vs. (\sigma^+ D - \sigma^\circ D)$  are as follows:

| Group:                   | NSO  | NCO  | NCS  | $N_3$ | NO   | NC   |
|--------------------------|------|------|------|-------|------|------|
| $\tilde{K_{\mathbf{A}}}$ | 0.50 | 0.30 | 0.30 | 0.28  | 0.20 | 0.15 |

The error in fitting best lines was  $\pm 0.04$ . The values for the groups other than NSO are of smaller magnitude than previously reported,<sup>9</sup> because of the improved form of the equation used, but the previous conclusions are maintained (see below).

The magnitude of  $K_{\Lambda}$  for NSO may well result from the ability of the sulphur to accept electrons into its *d*-orbitals.



Plot of  $[(A - 170)/15,000]^{\frac{1}{2}}$  vs.  $[\sigma^{\circ}_{R}(1) - \sigma^{\circ}_{R}(2) + \lambda]$  for parasubstituted N-sulphinylanilines, phenyl isocyanates, phenyl isothiocyanates, phenyl azides, phenyl isocyanides, and nitrosobenzenes; the line shown has unit slope.

For interaction with the *d*-orbital acceptors chlorine and bromine, in which the foregoing groups act as electron donors,  $\lambda$  is given by equation (6), in which  $K_{\rm X} =$ 0.21 for chlorine and 0.32 for bromine.<sup>13</sup>

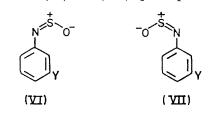
$$\lambda = K_{\rm X} \sigma^{\circ}{}_{\rm R} D \tag{6}$$

Table 2 includes values of  $\lambda$  calculated by equations (5) and (6) and of  $f_p = [\sigma^{\circ}_{\rm R}(1) - \sigma^{\circ}_{\rm R}(2) + \lambda]$ . There is satisfactory agreement between  $[(A - 170)/15,000]^{\frac{1}{2}}$  and  $f_p$  as indicated in the Figure.

The discrepancies for cases where the second substituent is a resonance acceptor indicate increased donor tendency in all the substituents studied. It is clear that NCO, NCS,  $N_3$ , NSO, and NC groups can change from donor to acceptor or near acceptor behaviour under conditions of strong electron excess. On the other hand they show increased donor behaviour when placed *para* to electron acceptors or *d*-orbital acceptors. Thus certain substituents not only show continuously variable

<sup>\*</sup> We use  $\Delta$  to denote the experimental difference between  $[(A - 170/15,000]^{\frac{1}{2}}$  and  $[\sigma^{\circ}_{\mathbf{R}}(1) - \sigma^{\circ}_{\mathbf{R}}(2)]$  and use  $\lambda$  to denote the calculated correction term.

 $\pi\text{-interaction},$  depending on the electron demand, but may also, at an extreme, change the direction of their effect.


meta-Substituted N-Sulphinylanilines.—Equation (7) was previously developed <sup>15</sup> to relate the combined intensity of the 1600 and 1585 cm<sup>-1</sup> bands of *meta*-disubstituted benzenes to  $\sigma^{\circ}_{\rm R}$  terms where one of the substituents (1) was of lower than  $C_{2v}$  symmetry.

$$A - 340 = 19,000 \left\{ [\sigma_{R}^{\circ}(1)]^{2} + [\sigma_{R}^{\circ}(2)]^{2} + \sigma_{R}^{\circ}(2) (\sigma_{R}^{\circ} x \pm \sqrt{3} \sigma_{R}^{\circ} y) \right\}$$
(7)

Application of this equation to m-methoxy-, chloro-, and methyl-N-sulphinylanilines leads to alternative A

<sup>15</sup> A. R. Katritzky, M. V. Sinnott, T. T. Tidwell, and R. D. Topsom, J. Amer. Chem. Soc., 1969, **91**, 628.

values of 5620 or 2520, 2270 or 680, and 1100 or 380, respectively. Comparison of these values with those reported in Table I shows that one of the two possible conformations (VI) or (VII) [corresponding to the



choice of sign in equation (7)], is much preferred. In the absence of knowledge of the direction of  $\sigma^{\circ}_{\mathbf{R}} y$  this form cannot be assigned.

[3/1196 Received, 8th June, 1973]